SKR - SKS ### Screw anchor for concrete Carbon steel with white galvanic zinc coating #### **FAST INSTALLATION** Cement screws for simple and fast assembly ### **SPECIAL THREADING** Special thread for dry fastening without creating expansion stresses in the concrete ### **LARGER HEAD** Larger head for stronger and safer fastening of the wood #### **ECO-FRIENDLY** Trivalent Cr³+ chrome coating, replacing hexavalent chrome Cr⁶ #### **FIELDS OF USE** Fastening of wood or steel elements to concrete supports Service classes 1 and 2 ### **DRY FASTENING** The special thread allows for fast installation of wood or steel elements on concrete supports with a simple screwdriver and a small pre-bored hole ### FAST AND STRONG FASTENING Versions with countersunk and hexagonal heads: the larger size of the head guarantees better shear resistance in fastening wood elements ### **REDUCED MINIMUM DISTANCES** Fastening on reinforced concrete occurs without the creation of any expansion stresses in the concrete and allows for reduced minimum distances ## **Applications** Shear angular TITAN fastening on concrete Fastening of insulation on a cement support using a counter batten > Fastening of pillar base to the ground ### Range The hexagonal-head version (SKR) is ideal for fastening plates or very thick wood. ### Codes and dimensions SKR | d ₁ [mm] | code | L [mm] | b [mm] | t _{fix} [mm] | pcs/pckg | |---------------------|----------|--------|---------------|-----------------------|----------| | 7.5 | SKR7560 | 60 | 50 | 10 | 100 | | 7,5 | SKR7580 | 80 | 50 | 30 | 50 | | CH13 | SKR75100 | 100 | 80 | 20 | 30 | | | SKR1080 | 80 | 50 | 30 | 50 | | 10 | SKR10100 | 100 | 80 | 20 | | | 10 | SKR10120 | 120 | 80 | 40 | 25 | | CH16 | SKR10140 | 140 | 80 | 60 | 25 | | | SKR10160 | 160 | 80 | 80 | | | | SKR12100 | 100 | 80 | 20 | | | | SKR12120 | 120 | 80 | 40 | | | | SKR12140 | 140 | 80 | 60 | | | 12 | SKR12160 | 160 | 80 | 80 | | | 12
CH18 | SKR12200 | 200 | 80 | 120 | 25 | | | SKR12240 | 240 | 80 | 160 | | | | SKR12280 | 280 | 80 | 200 | | | | SKR12320 | 320 | 80 | 240 | | | | SKR12400 | 400 | 80 | 320 | | NOTE: An alternative product with the CE mark is available upon request ### Codes and dimensions SKS | $\mathbf{d_1} \; [\text{mm}]$ | code | L [mm] | b [mm] | t _{fix} [mm] | pcs/pckg | |-------------------------------|----------|--------|---------------|-----------------------|----------| | 7,5
TX40 | SKS7560 | 60 | 50 | 10 | 100 | | | SKS7580 | 80 | 50 | 30 | 100 | | | SKS75100 | 100 | 80 | 20 | | | | SKS75120 | 120 | 80 | 40 | 50 | | | SKS75140 | 140 | 80 | 60 | 50 | | | SKS75160 | 160 | 80 | 80 | | ### Installation ### Geometry | ANCHORS | Туре | | ● SKR | | 2 SKS | |-----------------------------------|---------------------------------------|-----|--------------|------|-------| | Nominal diameter | d ₁ [mm] | 7,5 | 10 | 12 | 7,5 | | Wrench | Ch [mm] | 13 | 16 | 18 | - | | Head thickness | k [mm] | 5,5 | 7,0 | 8,0 | - | | Head diameter | d _K [mm] | - | - | - | 13,4 | | Shank diameter | d _s [mm] | 5,7 | 7,7 | 9,4 | 5,7 | | Characteristic tensile strength * | f _{u,k} [N/mm ²] | 988 | 1068 | 1069 | 988 | ^{*} Values in accordance with the certificate issued by Politecnico di Milano no. 2006/5205/1) ### Installation | ANCHORS | Туре | | ● SKR | | 2 SKS | |--|------------------------|------------|--------------|-------------|-------| | Nominal diameter | d₁ [mm] | 7,5 | 10 | 12 | 6,0 | | Diameter of pre-bored hole in concrete | d ₀ [mm] | 6,0 | 8,0 | 10,0 | 8,0 | | Diameter of hole in element to be fastened - wood | d [mm] | 8,0 | 10,0 | 12,0 | - | | Diameter of hole in element to be fastened - steel | d _f [mm] | 8,0 - 10,0 | 10,0 - 12,0 | 12,0 - 14,0 | - | | Tightening torque | T _{inst} [mm] | 15,0 | 25,0 | 50,0 | - | | Туре | d ₁
[mm] | L
[mm] | t _{fix}
[mm] | h_{nom}
[mm] | h ₁
[mm] | |------|-------------------------------|-------------------|--------------------------|--------------------------------|-------------------------------| | | 7,5 | 60
80
100 | 10
30
20 | 50
50
80 | 60
60
90 | | | | 80
100 | 30
20 | 50
80 | 65
95 | | | 10 | 120
140
160 | 40
60
80 | 80
80
80 | 95
95
95 | | SKR | 12 | 100
120
140 | 20
40
60 | 80
80
80 | 100
100
100 | | | | 160
200 | 80
120 | 80
80 | 100
100 | | | | 240
280
320 | 160
200
240 | 80
80
80 | 100
100
100 | | | | 400
60 | 320
10 | 80
50 | 100
60 | | SKS | 7,5 | 80
100 | 30
20 | 50
80 | 60
90 | | JNJ | | 120
140
160 | 40
60
80 | 80
80
80 | 90
90
90 | #### KEY d_0 = Diameter of pre-bored hole in concrete $h_1 = Hole depth$ $h_{\text{\tiny nom}}\!=\!\text{Nominal anchoring depth}$ d_f = Diameter of hole in element to be fastened t_{fix} = Maximum fastening thickness T_{inst} = Tightening torque KEY $h = Thickness \ of \ concrete \ support$ c = Distance from edge s = Centre Distance #### SHEAR RESISTANCE V - NON-CRACKED CONCRETE (1) | Anchor | Туре | | SKR | | SKS | |-----------------------------|-------------------------|------|------|------|------| | Nominal diameter | d ₁ [mm] | 7,5 | 10 | 12 | 7,5 | | Recommended resistance | V [kN] | 2,50 | 6,65 | 8,18 | 2,50 | | Critical distance from edge | c _{cr,V} [mm] | 70 | 110 | 130 | 70 | | Minimum distance from edge | c _{min,V} [mm] | 50 | 60 | 70 | 50 | | Critical centre distance | s _{cr,V} [mm] | 140 | 200 | 240 | 140 | | Minimum centre distance | s _{min,V} [mm] | 50 | 60 | 70 | 50 | ⁽¹⁾ In evaluating the total resistance of the anchor, the shear resistance of the element to be fastened (e.g. wood, steel, etc.) should be evaluated according to the material used. #### EXTRACTION RESISTANCE N - NON-CRACKED CONCRETE (2) | Anchor | Туре | | SKR | | SKS | |-----------------------------|-------------------------|------|------|------|------| | Nominal diameter | d ₁ [mm] | 7,5 | 10 | 12 | 7,5 | | Recommended resistance | N [kN] | 2,13 | 6,64 | 8,40 | 2,13 | | Critical distance from edge | c _{cr,N} [mm] | 50 | 70 | 80 | 50 | | Minimum distance from edge | c _{min,N} [mm] | 50 | 60 | 65 | 50 | | Critical centre distance | s _{cr,N} [mm] | 100 | 150 | 180 | 100 | | Minimum centre distance | s _{min,N} [mm] | 50 | 60 | 65 | 50 | | Minimum centre distance | s _{min,V} [mm] | 50 | 60 | 70 | 50 | ⁽²⁾ In evaluating the total resistance of the anchor, the axial resistance of the element to be fastened (e.g. wood, steel, etc.) should be evaluated according to the material used. ### RESISTANCE TO HEAD PENETRATION N - WOOD ELEMENT TO BE FASTENED | Anchor | Type | SKR WITH WASHER DIN 9021 | | | |------------------------|---------------------|--------------------------|------|------| | Nominal diameter | d ₁ [mm] | 7,5 | 10 | 12 | | Recommended resistance | N [kN] | 1,19 | 1,86 | 2,83 | | Anchor | Туре | SKR WITH WASHER DIN 440 | | | | Nominal diameter | d ₁ [mm] | 7,5 | 10 | 12 | | Recommended resistance | N [kN] | 1,66 | 2,44 | 4,13 | | Anchor | Type | SKS | |------------------------|---------------------|------| | Nominal diameter | d ₁ [mm] | 7,5 | | Recommended resistance | N [kN] | 0,72 | #### NOTE - The recommended extraction and shear values are in accordance with Certificate no. 2006/5205/1 issued by Politecnico di Milano. - The recommended extraction and shear values derive from tests on C20/25 non-cracked concrete, without the influence of edge and/or centre-distance effects - The recommended values for extraction and shear are obtained considering a safety coefficient of 4 on the ultimate load at failure.